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1. Introduction

Classifier systems are quite cornplicatml. in 1{’rnls of bo:h their ,xullp(ments w1(I lM-

havior, This complexity is understandable givel~ C!Wwide spect runl of ,m-tivitv t ht’v ;Irt”

intended to model. ~~fortunately. the complexity of these systerlls itlso Illalms it (!ifficlllt
to un~erstmd them ~~vtjcall~, Prevjolls alliil~sls !lCaSfOCUSeL\1)11spe(mific cO1llpoll(*llt~” of. .
the classifier system, for example, the genetic algoriti~m or thtl I)llckc’t l)~i,~ii(l~. The l:]t.li
of a unified theory has led users of these systems ro rely on ud hoc Inetllo(ls for ~.ll!x)sillg
representations and parameter set t i~.gs. Recent results (Riolot 19S5 ) indl(.ate tll;lt classI”
fier systems can be very sensitive to particular wlcodings and pariunetw imll[)ices. In ttlis
paper. we propose a methodology for studying the interactions illll(lll~ ~iit-lo(~s m[lll)()!~t~llts

of the classifier system architect[me.
Cl=sifier system behavior can be stldie(i t,y imalyzing an rquivalcut (l~]~;~[lli(.id .+ys-

tem, The dynamical systems perspective has important consequences for classifi(’r systt:llw:
fundamental properties emerge which may enhance or destroj. the abilities of such systrllls,
.+ccompanying the purely descriptive elements of ~he analysis, are important prrscxiptiv(’
ideas. Different s+ects of cl=sifier systems CaIl be (Iirectly linlwci to ~.hese emergent (ly -
namical properties with implications for the ~ffectlve (Iesign of chwsitier systems. A vari(’ry
of questions can be addressed using the methodology developed htwe, illclu(!ing, ]JU1 not
limlted to: How mmy classifiers are required in the system before iriteresting bohitvi(m (illl

OK ur ? What is the likelihcmd. that chains of cl.aissifiers will forn~’? How (Irnse will tll(wl
chains he? What is the impact of specificity (N1tlws~ propm-tim”.’ !19!1;11,is tht! illl~)ildt {)(

learning and representation on the (!ynamical Iwhavior’. ) HOW Stii!)k ilr(~ t.!ltls(’ syst(~l~ls’,’
By viewing a set of classifiers M a nvtwork. it is I)ossiblu to iIlvvstigntv thr tol)olo,gi(.ill

properties of various collections of classifiers. The cmmection I)wween (.lil~sifi(’rs i~ll(l IltII
works is well known ( Forrest, 19s5). section z ({efi Ilvs u mappjllg Ix’tw(vvl (Tlmw+ifit’1syst(’ills

and a l-lass of finite nutornata cfille(l ran(lolll 13001t~:tll”networks ( Iii~~ltf~lli\:l, 19US). Tl)(’ tl}”
nmnicul properties of random 130(dtxm lwtworks havv ken st~ldie(l t*xt( Ilsil’vly ( I(illltftll:lll.

1!)S4) ( Derrida and Stauffer, 19S6) ( Dt’rri(!a Ml(i W’risl)uch, 19S6), an(l gvll(~rnl ttv.llllitlll~ls
huv(~ Iwrri developed for determining thww pr(ywrtirs. This work SI1(WS rtlnt (l~[l;ltlli(.ill
I)rhnvior can ‘be characterized hy n set of vrtwtgmt pr(qwrties. Ill this 1x11)(w,wv link Illtw~
Ilrolx’rtit?s to important aspe:ts of clnssilivr systr:ll Iwhnvior.

Tllv paper first develops the m~ppil]g l~rtw~wll (.li~ssifi~r syst{vlls iill~l !i, dtSiIII II(’I \\~IIk.,

o.11(1 (iisc~lsses various emergent Imqwrt it’s. St’rt.i(}ll 3 lwrsmlt:+ i)[”(’lilllillitl’y Illllllf’llt.;ll r(’
slllts, ilild Section 4 discusses tht~ ilnplicnt ioils ()[ t Ilis ;Lpprodcll.

2. Classifks aa I’)ynamicml Systems
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the other nodes in the network (those with directed arcs into ?.he given node) at t inlc t,
A predetermined (and time invariant) Boolean function is msociatd with each IN)(ILJ,TI1l*
variables of the function correspond to the Si ‘~tes of the conllectt’li Ilodes, The h)ol(’illl
functions can varv for different nodes, as ran [hu liillnb~r and hwatiml t~f til(’ i[ll)llt IIO,l,IS.
.+ thrm-node Boolean network is shown in Figure 1.
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Figure 1. An Example Boolean Network

.4 rnmbn Boolean network ( RBN ) is n Boolean network in whirh t tw ct)l~ll(v-tivi ty
pnttt=rn WM.I the Boolean functions are assigned stochastically. For cx,unplr, ml !{BN cINI1(I
be fornwd for an n node netmrk, where every node is randcm~ly ctmImctm! to two ot.lI(*r

nodes by either M ArJD or an OR function, also selected ranckmdy. A sl)w”ificntiol], SII(’11;Is
the one just mentioned, defines one class of RBNs -each im!ivi{lllnl Imvl]tm- ()[ n l)ilr~,i(llliu
chws will have similar emergent properties. ,41. ililp(l~tllllt (ll~t!sl.iol] is wll(’till’r (’l;isslli(’r
systems correqxmd to a specific clnm of RBNs.

A?.2 A Mapping from Classifier Sy.~iem.~ h) Uoofeun Networks

Tht~ mapping from a cl~sifirr systrln ( C’s ) to n thwhn lll~tiv(wk ( lIN ) is 11(’till[vl ill
stnges, [nitimlly, CS is a simple two-ri)[](l.itit)ll clnmitict systrlll wltll IIf’j@ i(lll, WI1110111
lm~-t.hr(]~igh, nnd with Im provisiolla for lill~itr(l size mmwmgv lists or I)i(l(lillg, Yvg:lril ~11IS
(mlv ILl](nvr(l (MIthr sec(md (wn(liti(m. Thr l~ml)j)i;lg is (ldilml ns fl)lh)ws:

-1, AssigIl (MIr II<xle in i3N ftw rvrry l)owil)lr lllwwmgr t l~nt (x)lll(l IN* IN)St(Vl 1)~’ ( ‘S ,,1

il~ I’llvirtmmmlt. Erich mA* will Iw ill Stntr 1 rx:wtly Wilt.ii tlw lqf~l”l(’sl}(lll(lill~IIIIW+;III,(I

w(NII(I IW lx)~tfyl to ttlf. l]tfqg~g(~ ll~t Ill ~w$, 1111(1 It wll] 11~ill Stutr [) ~)t,ll~.l”wis(., [“11! 1111(111”:111

fllll(-tit)ll n.mo(’inml with Pm-h llo[lt* rllfor(’r~ L]lip,lwlluvi(~r.
‘) ~(lr ~nl”h (“hLq~ifl~r(’1E (’S ((”, i!l [If t]l(’ fl)l’111(’I)?Idl~lfJIl /,, ( ‘IJIJdl~lil!l”l: .’!, /!,111, 1...

~“()[lst,rlit.t tllf. lhm)lt~nllfllll(-t.i(~ll /, for III(* II IMI{* i.(lll”f’slj~lllillll,~ III .lfllt~lll o.11(’11llli Il /, I ,

,)
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true whenever ci would fire. Specifically j, will be of the form ((ml I V ml~ V ) i ( ~~:2i ‘J
m22 V . ..)) where the mlj and and nl?k are the sets of messages ~hat match C(~lltlition- 1
md Condition-2 respectively. \l will be of the fOrlIl ((ml V m? V ) A -(r712i V IJ122 V j )

if .i~e second condition is negated.

3. The node corresponding to .4ctio]i, is assigned f, as its Boo!ean function if tll,’r~’
is no other Boolean function defined on that node: otherwise, ~1 is ~mu~l)illed tlisjllllc.tiv~’ij”
with the exist ing Boolean function. This latter situation arises when cwo or more cli~<sitit’[>

have identical action messages.

1’ is straightforward to show that this mapping preserves the functional belmvitw l)f
a simpic claasihr system. That is, for each possible state of the message list iit tilll(: t
(corresponding to a set of nodes in the Boolmn network that are in State 1). t Iw [llt’ssil<~
list produced by the classifier system at time ! + 1 will be equivalent to the set of ll(>(!t~sill
State 1 at time t + 1.

To extend the mapping for pass-through, we assume that the pass-tllrollgh (JIJ(*rilti(lli
is defined on the first condition. .+ cl=sifier with pass-through is etFccti\’ely (listribllt~vl
across its various output nodes. Specifically,

4. For each cl, construct the set .4, of all C,”S possible action n]essiil{t~s, i~l~~lfor ~IiIi”ll
aj 6 .-L construct the set .lfll, of possible activating messages for thiit :u:tiol] ]llessii,~~’.
Each message in :\fl,, m;lst satisfy bt)th the constraints (i, e, match ) of Cm]ditiml- 1 ()[
c, and the output message u,, The set .112, is constructed by taking all IJlcssages that

W 1,,, .\12, > triples for (’il(”llcould possibly match Condition-?. The result is a set of < a), .

clmwitier c,.

If 2, > triple, the doulean functimi nt mx]e u, is :1.llglllt’111II(I5. For each < a:, Afl,,,.
as in Step 3 with a clause that specifies the conditions under which the outp~lt lll(~ssil~(’ (J,
would be produced.

Figure 2 shows the mapping for three classifiers. The three-hit two-cml(litif]xl (Olnssith’r
1#(_),#Ol; 000 corresponds to the Boolean function (( 100 V 110) A (001 V 1(J1 )) 011 t l~t’ ()()(1

nodti. TIIC classifier fJO#, =1 11; 11 # is distributed acrcws the mxies 11(I UIN1 111 wllirll
correspond to the possible p~sed-through messages that it could produce. This t’l:wl!i(’r
also illustrates the use of neguted conditions. The classifier 001, 1lfl ; 110 slum’s i~llout ]~1lt
node with the second cl~sifier; the 13nolexm expressions for wwh cltwsifirr i~rr ~.(H~llNIl(I(l
~lisjlltlrtively.

fly restricting the nutnber of mxles thut can be in the “1” Stiltt! iit illl~ ill!itilllt, 111{’SSil~{’

lists {If Various restricted sizes cun I)c si[lllllntw{. In lhc case wlwrr Llwrv ;UXIIl)tm’ III,1IIV4
whose Boolean furm ions CdUaCC to I ttl~ll t,hm-r w-c slots 011 tlI(I l)lt’ssil~(! list. it II( )11(1(’

tmmi[listic procedure is used to st~h.w:twhicli Il(xlrs itl~ i~ctu[illy S(:L to Stnt(* 1 III t lilt {o;l:~~’
whrrr them is a strength ~wwcintwl with CW-11[ li~ssiti(~r, ttlllt Str(’llgth (’;111 1)1’:11)1){)1I 1(1111’tl

mIMNIg ttiewuious Boolcsm funrt. i[ms t.hnt illllJl(vlwl]t the rlwiitit’r. ml(i Llot)ll’illl [1111(111111

rm.;(wintml with CW-hli{){l~tht’li 1)~’t’t)l]irsit l)rol)i~l)li~til: function ()[ tlt~’ St.rISIIAt.l)S;I>.+{N.I;IIt’11
wit II t,tIf’ vnrious clauses.

‘1.11(*IhIXJPILIIm’tw(mks tht r(wrml)oll(l to cl;Lwifim systml]s II:LVVillll)(wt:lllt :.I I II(”I IIIiIl

‘tI :nt;il.t.(~1.i:4t,it.s Tllf.rf’ nrf’ two I,y]ws ~~fII(Mlf~:{ill t,lNIsr syst(’ll)s: illh’rlld ~11111l’~tl’llli~l

Extvrll:d I)()(lfw Ilnvr wn[jty I)()(driul fllllrtit~lls, :uI(I txwrosl)(nl~l to [lwssn~’s t 11:11 llli~lil IN’

~rnvrnttvl l)y thr illl)~lt illtvrf:utt of tll{~ i.in-wilirr systrlll. Illltv’ll:d 110(1[% Il:lv(’ Il!llll.l:l] 11)

ll(~oi(.;lll fl:tlrt.io[ls ml(l c:)rrt.sl)oll(l t{) IIIIIss;lK{’sfIlltt {.ILIII)c*s(’llt lIy ii ~iv(.11 1“1:1..ltit’[ 111
l~i~lllf’ ~], N(}(IPN~M)[),11(1, :111(1I 11 ill(. illt(’Ill;\l :)1111tilt’ rt.)ll:lil)ill,~ Il{hlf’s :111’(’KII”III;II
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Figure 2. An Example Mapping

The Boolean functions defined on internal nodes have a regular structure; this can he all
important determinant of globaI behavior for certain RBNs

(lnce a clruwifier system has been mapped into an equ; valeld Boolean network, i rs
tiynamic behavior can “be studied. The state of each node ccwresp mds to whether or llt]t
its message is currently posted on the cl=sifier systems messcge list. By setting the mxtes
in the Boolean netvmrk to correspond with the initial set of messages present in the systcm,
temporal behavior of a cl~sifier system can be observed by iterating the network. Yless:qq?s
from the input interface are mapped to the external nodes Cf the network. Since exterll;d
nodes have empty Boolean functions, none of them will fire after the initial time step. For
some questions, such aa determining the amount of internal connectivity in the lwtwork,
external messnges are not particularly relewnt. For other questions, input Inmsqqx fr(m~
the environment can be simulated by periodically firing some of the exterlml Illxlfis (Illri[lg
the iterations.

The configuration’ of a particular ckusifier system has a direct impact on its Ll(N)l~wIl
network qtructure. The number of i.itern:d nodes in the network is related to the llilllll}(’r
of clwwitiers in the system and to the usc of pass-through. An intrrmd m)dr (*xists f(w (’v(’ry
~miqlm message sent by a clamifir. Thus. Inrger numbers of clmwificrs or tlw (M’ ()f l):lss
throng}; will in general imply nmre intcrlld mNh:s. Hmmwr, :LSthr IIUIIIIWYof [“l:~ssifi(’w
incrrmscs, the likelihood of (lllp]icate ttmswtges illcrem.es, implying thnt t.11(’11111111){’rIJ
intmul:d nodes will not incrmwc CXiLCtly Iilmnrly with size .2 Thr Imrticlllnr il)(dc;u~ fllll(.rit)ll
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and the num-ber of input arcs on each
ccnditioris from various classifiers and

internal node are related to the number of input
the proportion of # symbols. .4s the number of

#s increases in a condition without pass-through, the connectivity of the corresponding
node should increase exponentially. Pass-through complicates the calculation. however,
because the number of output nodes is increasing at the same time (but not necessari Iy
the same rate) as the number of input messages. Different learning algorithn= may i~ls(>
affect network structure. For example, some algorithms may encourage convergence ilro~lxld
some sets of important messages. The details of different classifier system configurations
and their network properties are explored in Section 3.

A particular classifier system can be mapped to an equivalent Boolean network. Be-
cause different configurations of (randomly generated j cl~siiier systems have disti[~ct str\lc -
tural properties, we can study the dynamics of any particular configuration by generatil]g
RBNs with the structural properties (mean number of input arcs, proportion of illttlr:ml
nodes, etc. ) corresponding to that configurate ion. It may be possible to use a similar
approach for clrwsifir systems after learning. This will require a careful study of the (dif-
ferences between classifier systems before and after learning. Of particular consequence is
how the overall topological structure (in the mapped representar ion) changes after learn-
ing. For example, some learning algorithms might take advantage of existing topological
structures (cycles, etc. ) and build associations between the Input/output interface ancl
the existing structures. Others might construct new topological structures that are sigl~if-
icantly different from those that exist in randomly generated cl~sifier systems. .As shown
above, diiYerent configurations will imply different underlying network structures. By find-
ing the emergent properties of these different structures, a link between system design itll(l

performance can be derived and exploited.

~.J Emergent Properties of Random Boolean Network~

The emergent properties of RBNs depend on the number of nodes, tile null~bt’r of c(Jll-
nections between each node, and the Boolean functions employed (Kauffman, 1994). OIICC
these characteristics are known, the typical behavior of different classes of such Ilt’tworks

can be firmly established. The configuration of a classified system will have a direct vthx:t
on the aforementioned network properties. Thus, an understanding of the (l~;li~ltli~s (d’

Boolean networks vis-&vis these properties, provides insights into the dynamics of ~i~~i( )IW

types of clwmifier systems.

A given Boolean network with n nodes has Y possible states ( {O, 1 }“ ). Tlw D(N)l(o:LII

functions and connections among nodes impiy a deterministic state triulsitlf)ll tl~ll([ i~~ll,
Given that the network is deterministic and finite, it must evcntudly frill il]t(, soIIIt* sI;LtiI

cycle. Different initial conditions may, however, cause the network to cl~t~’r (Iitfrr(’llt st,;II~I
(.ycles. All points in the state space are either part of some state cycle, or tlI(sy li(~ 1)11;L
trnjw:tory that leads to a cycle.

Although this is the first analysis of Dodcau networks that corrcspt)ll(l (Ilr(vtlyI(I

rli-uwif-h syst[*ms, tw.tworks with similar str{wtures llavt~ been itlitd~~(’(1 ( [(ililtfllli~ll. I IJi$l ),

Thr rcslllts of these annlyscs (Knuffn]an$ 1984, ~Jp. 151 -2) i[l(iiciltt’ n varirty ()( illllN~rt :1111
{Iynm:licnl Iwtwork prowrtics. For cxampl~, the nctual nwul)t’r of (Iistilll.tt ~r,nt~m(.}~.l~s
is 011 tht’ tmlcr of the sqllnre r(x)t t~f the Illul]lwr of mxkw. F(]r ii []~-tw-[irk \vi[]l 1[),[)[)[)

ll{Xh’:i, Illis W)llhl iltll)ly only 100 (Iist.illct Stiltt’ (VclfW. (?~~.1(” 1(’ll,qt.11~ ~llf’ ill S() i! l)l~”jllll
s[lliill, with ilwlliaxl cyrlr lt*~lgtll ngnil) 011 tllr (w~l{’rof ?1°~ Wll(’1(- 1,11(- l,]l{’O1(’[,1(./11lll’l’illlllllll
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is 2“ (in the 10,000 node case this is the difference
fraction of the nodes (60-80%) tend to !ix to either

between 100 and 210’000). .4 large
always on or always off in a given

state cycle. Different cycles tend to have similar states, with hamming distances3 between
1-1OYO. State cycles tend to be stable to most one node perturbations, i.e., if one node
in the network randomly changes state, the network usually does not enter a new state
cycle. Many of these properties have direct implications for classifier systems. ~Ioreover,
some unexplored pr+erties of these networks are also relevant to cl~sifier systems, for
example: the impact of randomly firing external nodes, the propagation paths (the Boolean
net analog of an execution trace) caused by the activation of particular subsets of nodes,
the use of probabilistic Boolean functions and restricted size message lists, recording basins
of attraction for different sets of external nodes (for example, if any combination of external
messages led to the same basin of attraction. it would indicate that the classifier system
wasn’t differentiating well between various inputs), measuring the lengths of t.rrmsients
(transients are likely to be quite important fer clicmifier systems with frequent inp~lt from
the environment), and state cycles for sub-networks (global states are likely to IN less
importzmt than states for functional sub-pieces of a network).

2.4 The Importance of Emergent Propertie~ to Classifier Sy~tenu

The preceding discussion suggests that the dynamic behavior of classifier systems are
dominated by a set of emergent properties. The existence of these properties may impose
major constraints on the performance of any cl~sifier system. Therefore, an understanding
of the link between some of the emergent properties and classifier behavior is important.

The clrwsifier system’s awhitecture derives much of its power through the f~~lniitlo:]
of chains of rules, Such chains support internal reasoning processes that allow a classifier
system to exhibit more than stimulus/response behavior. The sub-state cycles (c}.cI(Is in
sub-networks) that emerge in Boolean networks are closely related to chains in a classifier
system. Any cyclic chain of classifiers will correspond to a cycle of states in the Llooli!an

network, ad any cycle of activity in a group of nodes will correspond to some set of
classifiers activating one another. B~ed on this connection, we predict that the likclilmod
of chain formation in classifier systems is closely tied to the system’s configuration. Critical
values probably exist that catalyze the format ion and surviwd of chai m. Section 2.3
indicates that the number of classifier chains that form is relatively smidl and tl~ilt tlwy
tend to have few members. The ability of classifier systems to exhibit s~lf-s[lst,ili] li[lg
activity, that is, to generate internal activity in the absence of external input, is dso likely
tied to certain conjuration parameters. At some level of self- sllstaining art.i~’it y, syst (21115
should be abie to operate with little or no envwonmental input and be ilbl(! t(I ff)rll~ lil~~(’
internal repr~~ntaticms. Tcm much internal activity is expected to hurt ~)t”rforlll:llli”f’, sill(.(’

the environment is a crucial component of learning in classifier systems.
If the Boolean networks corresponding to classifier systems have .iiltlililr l)rol)t~,t i(’s i,~

those described in the literature, most classifier chains will be very ~in~iliir to INIC;Illot.11(’r
in terms of the wctual messages that are posted. Once a chain is enterc(l, it sIIOIII(I IN.

stnble to small pertllrbutim. J. If ii perturlmtion C!(WS invoke it IICW (“l~ilill, t~l)i(.;lll~ I )111~

u wImll sllt)set of the exi~ting rh~ins am likely t(; be ILvailnl)lr, Tllilt tll(~r[~ is it t 1:1(1~’(~ft’
——..—— — —.—.——. ..—.—.. ——— -.—. ..

II ,rW, ~iOb~0,,,= “[ . ~mleu “etm~k ~a~h?~Ull,~A[~lhv ~~l~ningeach Imdc In the nclwurk IJIIe 1111IIIN+III(JII

III ~ bin: :y ntring ●nd aettinn the hit prmitiorr .wx.or~ling to the currrnt ~lnt~ d [he curre~pun~llllg IIIMIP l“hr
hammin~ distance bctwccn LW muchMtringn th~n provi,lcg a mcuure d gllrlll~rlty twtwren thr I w,, .I,,I,IS

G
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between system stability and ultimate performmce. Stable systems will be able to operate
gracefully in the presence of unusual external stimuli, and under the influence of changing
structure due to learning. Nonetheless, the difficulty of implementing new chains may be
problematic in excessively stable systems.

Finally, the potential for most of the messages (i. e., the nodes corresponding rO mes-

sages ) to become fixed (either on or off) exists - a phenomenon called - frWzi ng. ” By
considering the truth table that defines a particular Boolean function. it is possible to
determine which combinations of input values produce 1‘s and which ones produce 0’s.
Thus, for a binary disjunction, there are 75% 1’s and 25% O’s in its truth table, and given
random inputs the result will be a 1 3/4 of the time and a O 1/4 cf the time. For Boolean
netvmrks, an important statistic is this ratio of 1‘s to O’s in the functions defined on the
nodes. Bmlean functions that have either an abnormally high or low percentage of ones
in their truth table, tend to freeze ccicti patibw. Frozen messages may binder attempts
at fcxming a system that can actively r-pond to new situations. Moreover, algorithms
that reward or penalize clzssiflers based only on ~he presence or absence of the associated
message at a given time, may be adversely tiected by frozen messages. A close link be-
tween the form of classifier conditions and the percentage of ones is developed in the next
sections.

The above elements combine into a potentially powerful descriptive and prescriptive
methodology. Many of the important performance cbacteristics of a classifier system are
likely to be related to its dynamical behavior. Through the use of the above mapping,
connections bet ween system design and dynamical behavior can now be derived. This
connect ion can be used both to understand current system Performance and in the design
of new systems with improved performance characteristics.

3. Results

The emergent properties of a Boolean network depend on a relatively small set. of
defining characteristics. The major characteristics which, determine a network’s behavior
are the number of nodes and their associated Boolean functions. .4 complete analysis
requires both an understanding of how different parameter choices in standnrd classifier
systems influence these properties, as well aY how these properties affect t,he d y rmmic
behavior of the network. The results reported here are preliminary, but they !ocus on Imth
of these issues.

All experiments were conducted using an 8-bit cl~sifier system. An 9-l]it systcu],
rather than more common 16- or 32-bit systems, was used in orc!er to simplify c(mlpllt;\-
tion. l+om the Boolean network perspective, an 8-bit classifier system with 20 t.lassificrs
is roughly equivalent to a 16-bit chwsifier system with over 1000 classifiers, W’v ILX]MV.t

that relatively simple scaling relations exist that will allow the results to k itl)l)lit~(l to
arbitrarily-sized systems. Each reported data point is a mean romputed frwn 30 ~ii[l(lollll~
generated classifier systems.

,9.1 Internal and Eztemal Node~

i
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no classifier can rmpond to, then the node corresponding to that
included in the network. Thus, there are two values of interest:

messa.gc would not be
the nmber of actual

internal nodes and the number of actual external nodes. For the structural properties
studied in the following sections, the ratio of internal to external ncdes is the of iuterest,
and it is shown in Figure 3. The ratio should remain constant as the number of classifiexx
increases (since each new classifier creates new internal and external nodes at the same
rate), until the system begins to saturate. At saturation, the addition of a new clmsifim
will not always produce a constant number of new nodes, since the nodes used by the
classifier may already be in the network. The figure shows that the ratio increases gradually,
indicating that external message nodes saturate more quickly than internal nodes.

1- i

i
i

0 20 40 60 80
Number of Classifiers

Figure 3. Internal and External Nodes

9.2 Connectivity

Previous results [Kauffman, 1984 ) suggest that the average nlunber of inpllt it~(-s [m
node is an important determinant of a network’s dynamical properties. Figures .! :11](I 3
show the average number of input arcs per internal node. The first figure S11OWStllc i ~tl~it,~t’

for both internal and external arc~, while the second one cocsiders only those iir(:s (-( )Illillg

from other internal nodes. As expected, the use of more #s in the conditimls sigl~i!i(”iultl~

increases the amount of connectivity. The average number of arcs idso il,(-l(~i~+t’s with
the number of classifiers iu thr system. For small numbers of U~iLSSikW- Wll(i!(’ ~l]liill

;s relative to the number of potential messages -–the average ll~unlx:r of il~~)[lts sll(JId(l

not change -.vith additional {“!awifiers. However, ,as the number of clmssific’rs r[llilti~(’ ro
~)otentid messages increases, multiple c]awifiers sharing the same iut(~r[ml U(NICr(’slllt, ill
grently incrcwed connectivity. Fig~m 4 ill(li~itt(:~ that Im..s-t,lln)l@l il~llil)its (.(jllll(’l”tivity.
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This occurs because ahigher number ofinternal nodes are created from p=s-thrcugh for
the different possible output messages, and they share the same number of connections.
One unexpected result of pass-through is an increase in the internal to internal node
connectivity (see Figure 5). With pass-through, the ratio of internal to external nodes
in the system incre~, and thus a random set of connections will have a higher rate of
internal connections.

80
$ }“’’’’’’’’’’’’’’’’” 1

0, 1z t i

G
a
aI

‘o

I

i

1-/
,~ ,

So:,Jlp

‘njot’., P
\

~,1 , , I L I

c1 20 40 60 80
Number of Claastiiers

Figure 4. Mean Total Input Arcs per Internal Node

Another measure of internal connectivity is +he property of self-sustaining activity (see
Section 2). To test this property, all internal nodes were initialized to State 1 and the
netvmrk was iterated until it reached a state cycle or activity died out (all nodes in State
O). Activity in sparsely connected networks will tend to die out, and highly connected
networks will be self-sustaining. Once a .self-sustainin~ cycle begins, it will continue in the
absence of any exogenous inpute. Figure 6 shows the pro~rtion of networks from different
classifier system cm@urations that have self-sustaining components. Figure 6 indicate
that a rapid transition occurs from systems without self-sustaining components t o t hose
that do have them. The average size of a self-sustaining cycle (the number of nmks active
in the self-sustaining state cycie) is shown in Figure 7. This figure indicates a ]x)trntial
for rapid growth and saturation of internal networks.

$’.Y Boolean Functiom

The potential for messages to become frozen either cm or off depends (m the Iwrcrllt:tgc
of ones in tile Boolean function associated with that message node (see Scctitm 2 4). .’,s
the mvwlirc of “internal homogeneity” ( Kauffman, 1984, p. 149) moves it~r~y frO1n J[l’7i~.

networks tend to exhibit large “frozvn components’” in which the st.atcs [~f 110(ICSlNIts(j[lN’

9
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Figure 5. Mean Internal Input Arcs per Internal Node
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percentage of one’s in the truth table is given by

~, = (2m-l)(2n -1)—.
~m+n ‘

!1)

where m and n denote the mmhw of mcssageg that could possibly nmtc]l tlw tirst ;III(I
second conditions respectively. This equation assumes that the set of mntchin~ Itwss;IgtIs
for the two conditions is di~joint ,4 If the smond condition is negntrd, tiwn

(2m -1)(1)
M = Om+n “ (2)

II



not fr=ze respectively):

Thus, if the first condition has no #s the node will be active when the second condition
has at least one #. If the first condition has 2 #s then freezing will occur when the second
condition has more than 1 #. The actual distribution of #s in each condition cm he
controlled when the syst~m is initialized or through biases in the learning operators. Till’st’

resu!ts suggest that classifier systems are highly sensitive to the proportion of #s ill tlw
population and that the nature of this sensitivity should be studied carefully. Prelirninitry
analysis im!icates that if #s are chosmi randomly with probability 0.25 then dxmt 53% of
S-bit system nodes and !35%of 16-bit system nodes will be frozen. With a 0.50 probability
almost all of the nodes will be frozen in either system.
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Figure 8. Percent of Onec in the TYuth Table Using Equntiou (1) (?1 “-:rfl)
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Another aspect of learning is how stable a cl.=sifier system is to the operations of t.lw
genetic algorithm. It is important, for example, that a rtmdoin mutation or cross-m-m IN’
capable of having a measurable effect on the overall system, b~lt that it not c(mlpl(’tt’ly

disrupt all ongoing activity. In Boolean network terminology, it would he illtercst illg
to know whether one genetic algorithm operation were capable of unfreezing n st~t of
frozen components (or freezing a set of unfrozen components). Nlore generrdly, Jvt? illl’

interested in the expected amount of perturbation caused by the application of tlw ltv-wl~illq
operators. This can be measured by comparing the dynani-s of networks t)cfore iul(i ilftt~r
the application of genetic operators,

9.5 Ongoing Work

The results reported here are partial, and we expect to sllpplement them with :Lv:ui(’t y
of further experiments.

We are currently completing the studies of how basic cl~ssifier configurations r~li~t(~t()
basic structural properties in Boolean networks. As part of this work it will IX i;nportn[lt
tc consider luger systems with 16 and 32 bits and work out the scaling re!atiims betw(’(v~
various-sized systems. There is a possibility of using the Connection Machine for the Inrgrr
experiments. Once the basic structural properties are understood, it will ho possil)lc to
cmry out the actual dynamic analysis of the networks using RBNs.

The experiments to date have been conducted mung the simple mnppin~ Iwtwww (.li~+-

sifier systems and Boolean uetworks. Using the extended mapping, “vith restrictml mrss;tg(’
lists a.m.!bidding, is an area of future investigation.

Another mea of active investigation is determining the frrquencics of 1‘s ill [I()[)1!*w1
fllnctions corresponding to actun.! ci~sifier systems. Ouce these frequencies mu lll~llmst (;()(1.
it will be possible to ussess ttle effect thnt frozen components are having (m rll]ulillg (“lnssi!h’r
syst( ms.

rho~eImsic studies are reqllisite to w rnr(~flil iuvmtigntion of II(JWtlw IhMdtwll nt’twfwks
diffrr Iwforc and aftt’r Icmrning whic4 wr m(pm:t wili Iw one f~f tilt: lll(x+t lY’\’l’illillg ilS])(’(”1s

of this w(}rk.

4. Discussion

I :J
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The mapping between classifier systems and Boolean networks is for analysis purposes
only. Because representing every possible link in a system explicitly is highly inefficient. the
mapping of Section 2 is not a likely alternative to classifier systems. However, Alternative
network mappings exist, and they may be useful either for understanding (Jther nspects of
classifier systems or iri their own right rw models for cognitive activity.

The evidence that classifier system performmce is highly sensitive to the proportion
of #s suggests that an annealing (Kirkpatrick et al., 1983) approach to this parnmcter
might be useful. In initial stages of learning, higher connectivity would be dViMlt~~f?(JUS

as the system emphasizes exploration and identifies high-level default behaviors. At hktcr
periods, as the system refines its mcxiel oft he environment with more specific rules, a lowt?r
proportion of #s would be more appropriate. This annealing scheme could be implcnwnt~.xi
by biasing the genetic operators.

The formation of default hierarchies is an important and controversial aspect (~f~lilssi -
fier systems. An area of future investigation is to study the fo-rnation of default hierarchies
using the Boolean network framework. For example, the struccuru.1 properties of networks
built from clwwifiers using schemata with one defined bit (e. g., 1 # ### ###) cmdti he
compared with those built with two bits defined, etc. Ihrther, the dynalnics of trtinsitimw
from l-hit to 2-bit schemata could be studied,

The distinction between inte:nai and external nodes for Boolean networks rnises tlw
possibility that a system could learn to use its external nodes (i. e., the mvironmrnt )
M a form of external memory. In this scenario, a classifier system ;night product? m
external message that tiected its environment in some predictable way ( e.g. , cnusinp tlw
~~nviron:nent to produc,e SO~C irlput message at a later time) ft!l(t rely 011 t ]illt !’ff(’(’t ft)r

hder processing. Two examples illustrate how common this use of cxterl~ul nlcv!l(wy is
in the nnturai world, alarm clocks and pheromones. People do t~t)t Ilavc rt’linl)h’ illtt~~lli~l

clerks, but by setting an alum. clock before retiring (performing Im nci,i(m ill iui vxt{ml;d
mivir(mxntmt ) they cnn rely on its predictable behavior to Rwakcli [l)mli itt S(MINYIIIl~t~

in clw fllturc and begin executing some internal process. Likewise, niits (lq~t)sit v~wit)lw
I)hrrt)immes in thei I environment which they use later as trnil llinrkrr~ t[) till(l tl]t’ WIIy

Imck to t Iwir nest.
A (Iyntwnicnl systems appronch to undcrstrmding lmrning phrm)mwln nlltl l)tlwr rog

iiitivrnctivity nmy be very insightful. Until rcccntly, there !im hmul Iittlr tllm)rt’ti(.:~1 wtwk
(m hmrning systrms. Mont rewuch hnu hwn of the “])r(x)f of I)rilwildr” f~~:ll~ill wlli(’]1 :1
~mrt icuhu learning system is used t~) W)IVFtmme exnrnple prohlmn, ~’ilrrt~l~ttlmm~~i(”:ll I{.
s{tm( h t~nd~ tt) emphtize what or ll{)w fficl~nt~~ (liff~r~nt ?y~t(’111~(’nl) h’11[’11,Illlt :;il~s lit t ]{’

,
;dwlt how hwrning ~ystwna redly w[rk, rlm [Iymuuicd ,~ystrm.s np]n-(mcll (!cwril~(’il 11~11(S
]mwi(lm n wv to mnnwrr them kintlM ~)f tlutwtifm~, Fllrthcr. it (-nti IN. Iit)j)li(wl t.(t S~SltIIIIS

t.hnt (.nllti(~t be eMily Imdrrstm)(l nlln]ytirnlly, rithrr Iwt-nllw tlwy nrr tcH) (’l11111111{’:It(vI (~1
t.(m II Ivmy, This pni~r nppliea thr nmthi)(lol{)gy t[) clnmifim systmlls, I)llt Silllillw illnl)l~lll~s
t.nll l~r [Irfllmfl for ]wllrn.1 Iwtw[}rks nml otlmr lr~llil]g sclwnlm, (Jllcr It lllnljl)ill~ IIM 1111(111

(Idirw(l, th:’ tw-hmtl[m~ (lmcrd)ml Iwrr will rmt(iily rq~~dy. crh(gt~liiticnt ii~ll (d t.11(’ws(wlliltl~ly
(Ilsllurllfv ~~’~trllls into n slllglr (.! QLWS of I{l{)tlrls lllny llnvc’ ilitf”rfwt;llg (’IJII:4(sIIII(sII(”(.:4.
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algorithms, and an input/output interf~e. Each of these parts interr.cts wit+ the rt~st
of the system in non-trivial ways. The complexity of the classifier system nrchitecturr is
not surprising because it is intended to support a wide spectrum of nctivity. However.
that complexity makes it difficult to understand precisely how mch part of the systclil is
contributing to overall perft~rmmce.

The mapping fram cl~s”.fier systems to random Boolean networks provides :~tt]~or(~ti(.i]]
approach to the study of cl;wsifier system components and their interactions. The (lynwl~i(.

behavior of classifier systems is dominated by emergent properties which gr(~iitl~ il]fluuu.t.

their performance. Various w.mfigurations of clamifier systems have (Iiffmont (Iynnlllic
properties that w y in predictable ways, The generaI methodology tierivmi Iwrt: provi (h
insights into the behavior of current clamificr systems, and guidance for fllture extmlsioi]s,
More generally, the methodology is applicable to other learning systems such n.s Iwilr:d
net works, and it suggests several new avenues for exploring cognitive phmml~wn:~.

I:)
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